New relationships between Feynman integrals

نویسنده

  • O. V. Tarasov
چکیده

New types of relationships between Feynman integrals are presented. It is shown that Feynman integrals satisfy functional equations connecting integrals with different values of scalar invariants and masses. A method is proposed for obtaining such relations. The derivation of functional equations for one-loop propagatorand vertex type integrals is given. It is shown that a propagator type integral can be written as a sum of two integrals with modified scalar invariants and one propagator massless. The vertex type integral can be written as a sum over vertex integrals with all but one propagator massless and one external momentum squared equal to zero. It is demonstrated that the functional equations can be used for the analytic continuation of Feynman integrals to different kinematic domains. PACS numbers: 02.30.Gp, 02.30.Ks, 12.20.Ds, 12.38.Bx

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Connection between Feynman integrals having different values of the space-time dimension.

A systematic algorithm for obtaining recurrence relations for dimensionally regularized Feynman integrals w.r.t. the space-time dimension d is proposed. The relation between d and d − 2 dimensional integrals is given in terms of a differential operator for which an explicit formula can be obtained for each Feynman diagram. We show how the method works for one-, two-and three-loop integrals. The...

متن کامل

Feynman integrals and multiple polylogarithms

In this talk I review the connections between Feynman integrals and multiple polylogarithms. After an introductory section on loop integrals I discuss the Mellin-Barnes transformation and shuffle algebras. In a subsequent section multiple polylogarithms are introduced. Finally, I discuss how certain Feynman integrals evaluate to multiple polylogarithms.

متن کامل

ar X iv : h ep - p h / 06 06 24 7 v 1 2 2 Ju n 20 06 S - bases as a tool to solve reduction problems for Feynman integrals

We suggest a mathematical definition of the notion of master integrals and present a brief review of algorithmic methods to solve reduction problems for Feynman integrals based on integration by parts relations. In particular, we discuss a recently suggested reduction algorithm which uses Gröbner bases. New results obtained with its help for a family of three-loop Feynman integrals are outlined.

متن کامل

integrals with XLOOPS - GiNaC ∗

We present a new algorithm for the reduction of one-loop tensor Feynman integrals within the framework of the XLOOPS project, covering both mathematical and programming aspects. The new algorithm supplies a clean way to reduce the one-loop one-, two-and three-point Feynman integrals with arbitrary tensor rank and powers of the propagators to a basis of simple integrals. We also present a new me...

متن کامل

Evaluating multiloop Feynman integrals by Mellin-Barnes representation

When calculating physical quantities that describe a given process one needs to evaluate a lot of Feynman integrals. After a tensor reduction based on some projectors (see, e.g., [1]) a given Feynman graph generates various scalar Feynman integrals that have the same structure of the integrand with various distributions of powers of propagators. A straightforward analytical strategy is to evalu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008